Compositional Reasoning for Markov Decision Processes
نویسندگان
چکیده
Markov decision processes (MDPs) have long been used to model qualitative aspects of systems in the presence of uncertainty. However, much of the literature on MDPs takes a monolithic approach, by modelling a system as a particular MDP; properties of the system are then inferred by analysis of that particular MDP. In this paper we develop compositional methods for reasoning about the qualitative behaviour of MDPs. We consider a class of labelled MDPs called weighted MDPs from a process algebraic point of view. For these we define a coinductive simulation-based behavioural preorder which is compositional in the sense that it is preserved by structural operators for constructing MDPs from components. For finitary convergent processes, which are finite-state and finitely branching systems without divergence, we provide two characterisations of the behavioural preorder. The first uses a novel qualitative probabilistic logic, while the second is in terms of a novel form of testing, in which benefits are accrued during the execution of tests.
منابع مشابه
Compositional reasoning for weighted Markov decision processes
Weighted Markov decision processes (MDPs) have long been used to model quantitative aspects of systems in the presence of uncertainty. However, much of the literature on such MDPs takes a monolithic approach, by modelling a system as a particular MDP; properties of the system are then inferred by analysis of that particular MDP. In contrast in this paper we develop compositional methods for rea...
متن کاملCEGAR for compositional analysis of qualitative properties in Markov decision processes
We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and pre...
متن کاملPermissive Supervisor Synthesis for Markov Decision Processes through Learning
This paper considers the permissive supervisor synthesis for probabilistic systems modeled as Markov Decision Processes (MDP). Such systems are prevalent in power grids, transportation networks, communication networks and robotics. Unlike centralized planning and optimization based planning, we propose a novel supervisor synthesis framework based on learning and compositional model checking to ...
متن کاملCEGAR for Qualitative Analysis of Probabilistic Systems
We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and pre...
متن کاملCompositional Reasoning on (Probabilistic) Contracts
In this paper, we focus on Assume/Guarantee contracts consisting in (i) a non deterministic model of components behaviour, and (ii) a stochastic and non deterministic model of systems faults. Two types of contracts capable of capturing reliability and availability properties are considered. We show that Satisfaction and Refinement can be checked by effective methods thanks to a reduction to cla...
متن کامل